
Adaptive Lightweight
Regularization Tool for Complex Analytics

Zhaojing Luo 1, Shaofeng Cai 1, Jinyang Gao 1, Meihui Zhang 2, Kee Yuan Ngiam 3, Gang Chen 4, Wang-Chien Lee 5

1 {zhaojing,shaofeng,jinyang.gao}@comp.nus.edu.sg, National University of Singapore, Singapore
2 meihui zhang@yeah.net, Beijing Institute of Technology, China

3 kee yuan ngiam@nuhs.edu.sg, National University Health System, Singapore
4 cg@zju.edu.cn, Zhejiang University, China

5 wlee@cse.psu.edu, Pennsylvania State University, USA

Abstract—Deep Learning and Machine Learning models have
recently been shown to be effective in many real world applica-
tions. While these models achieve increasingly better predictive
performance, their structures have also become much more
complex. A common and difficult problem for complex models is
overfitting. Regularization is used to penalize the complexity of
the model in order to avoid overfitting. However, in most learning
frameworks, regularization function is usually set as some hyper
parameters, and therefore the best setting is difficult to find. In
this paper, we propose an adaptive regularization method, as part
of a large end-to-end healthcare data analytics software stack,
which effectively addresses the above difficulty. First, we propose
a general adaptive regularization method based on Gaussian
Mixture (GM) to learn the best regularization function according
to the observed parameters. Second, we develop an effective
update algorithm which integrates Expectation Maximization
(EM) with Stochastic Gradient Descent (SGD). Third, we design
a lazy update algorithm to reduce the computational cost by 4x.
The overall regularization framework is fast, adaptive and easy-
to-use. We validate the effectiveness of our regularization method
through an extensive experimental study over 13 standard
benchmark datasets and three kinds of deep learning/machine
learning models. The results illustrate that our proposed adaptive
regularization method achieves significant improvement over
state-of-the-art regularization methods.

I. INTRODUCTION

Recent developments in Deep Learning and Machine Learn-

ing technology [1], [2], [3] have led to a series of break-

throughs in many real world applications [4], [5], [6], [7].

Thanks to the large public datasets [8] and high-performance

computing systems, e.g., large-scale distributed clusters of

computers equipped with GPUs, we are now able to build

more complex and better-performing predictive models [9],

[10], [11], [12].

Consequently, many advanced deep learning models for

visual recognition have been developed in the past few years.

An important trend in these recent developments is that the

number of layers in these models (and thus their complexity)

has increased rapidly. Take as an example the famous visual

recognition challenge, ILSVRC [8], the number of layers of

the annual winning model has increased from 8 layers in 2012

to 152 layers in 2015.

Unfortunately, as the model becomes more complex, the

model is more likely to fit the noise in the training data, and

consequently, it does not generalize very well to the test data.

This phenomenon is called overfitting [13], which is common

in complex models and significantly affects the predictive

ability of models. Fortunately, overfitting problem [13] can be

effectively addressed by regularization [14], which typically

involves adding a penalty term on the complexity of the model.

Equation (1) shows the loss function that a model aims to

minimize. The first term, data-misfit, is an error term that

indicates how well the model fits the input data and the second

term is the penalty term, which is called regularization term. It

consists of a strength parameter β and a function f of model

parameter w.

Loss(w) = data-misfit + f(β,w) (1)

Many regularization methods have been proposed in the lit-

erature. However, the use of these methods is typically ad hoc

and experimental in nature. Given a specific application, data

scientists typically need to make many painstaking attempts

on the type of f (e.g. L1-norm, L2-norm) and strength of the

regularization, β, to achieve the best performance. In [15],

models are carefully tuned by the human experts and it has

been shown that using different values of β at different layers

of a deep learning model may lead to better performance in the

test data. Nevertheless, the sharp rise in the number of deep

learning layers poses a great challenge for manual setting of

effective regularization for each layer.

Driven by the difficulty of setting the best regularization,

we ask the following question: Is it possible to adaptively

learn the best regularization term? The answer is YES. From

the Bayesian view point, regularization term corresponds to

a prior distribution for the model parameter w. For instance,

L1-norm regularization corresponds to a Laplacian prior and

the L2-norm regularization corresponds to a Gaussian prior.

The best regularization should be the one that equals to the

actual distribution of model parameter w. However, the actual

distribution of model parameter w for different tasks may

485

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00051

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. GEMINI healthcare data analytics software stack.

vary quite significantly, and as a result, there is no single

regularization setting (strength β and type of f) that can fit

every problem well.

Fortunately, the intermediate model parameter w during

training process can be very informative to approximate the

actual distribution. Based on this insight, we propose an

adaptive regularization tool designed to learn the best regu-

larization term during the model training process. Instead of

employing a fixed prior distribution (i.e., by fixing f and β)

for the model parameter w as the regularization term, our

key idea is to capture the model parameter distribution with

an adaptive distribution function. In other words, we propose

to fit an adaptive distribution function using the intermediate

model parameter obtained during the model training process.

Subsequently, this adaptive distribution function will be used

to impose regularization on the model parameter.

Based on the above principle, we propose a practical

adaptive regularization tool based on the Gaussian Mixture

(GM) framework. We choose GM because it provides a

richer class of density models, thus can model the prior of

model parameter w better. The core idea is as following:

the deep learning model inputs model parameter w to the

adaptive regularization tool; the tool will then iteratively learn

the Gaussian Mixture as actual prior over w and adaptively

calculate the regularization term for the model.

However, adaptively learning such GM from the intermedi-

ate model parameter w is challenging for several reasons. Two

sets of parameters, namely GM parameters and model param-

eter w need to be updated. These two sets of parameters are

closely related to each other. An appropriate algorithm should

be designed to update these two sets of parameters properly.

Also, learning GM is an iterative and time-consuming process,

we need to design an appropriate algorithm to reduce the

computational cost.

In order to update GM parameters and model parame-

ter properly, we design an innovative and effective update

method where GM parameters are updated via a lightweight

Expectation-Maximization (EM) algorithm [16] and the model

parameter can be learned under a common optimization frame-

work such as Stochastic Gradient Descent (SGD) [17]. To

reduce the computational cost, we propose a lazy update

algorithm that reduces the computational time by more than 4

times.

Our proposed regularization method is a general and flexible

tool designed to support different machine learning and deep

learning models. The regularization tool has been integrated

into our GEMINI software stack [18], which has been de-

signed to support healthcare data analytics. Figure 1 shows

GEMINI, where various subsystems form an end-to-end big

data analytics pipeline, from data cleansing to visualization.

When the raw data is first fed into GEMINI, the data cleaning

and integration system, DICE, cleans the data. It works with

crowdsourcing CDAS platform to improve data quality using

subject matter experts (eg. clinicians). The cleansed data can

then be processed by epiC [19], which provides big data

processing and analytics such as aggregation and summariza-

tion. Deep analytics is supported by Apache SINGA [20], a

distributed deep learning platform. The red box illustrates the

interaction of the proposed GM regularization tool (GM Reg)

with Apache SINGA to provide adaptive regularization for

deep learning models. In the meantime, the data can be fed

into CohAna for cohort analysis [21]. Lastly, the results could

be visualized via iDat. At the storage layer, the data is stored in

Forkbase [22], a universal immutable storage system. GEMINI

runs either on a single machine or in a CPU-GPU cluster.

Contributions. The contributions of this paper include:

• We propose a general adaptive regularization method

based on GM to learn the best regularization according to

the intermediate model parameter instead of making ad-

hoc attempts to obtain a suitable regularization setting.

• We propose an efficient update framework where GM is

trained by lightweight EM algorithm [23] and model pa-

rameter is updated via SGD. We also propose an efficient

lazy update algorithm to reduce the computational cost.

• We conduct extensive experiments using both real-

world datasets and standard benchmark machine learning

datasets. Results on all the datasets demonstrate that our

regularization can achieve better (or equally good) perfor-

mance than all the baseline regularization methods (L1-

norm regularization [24], L2-norm regularization [14],

Elastic-net regularization [25] and Huber-norm regular-

ization [26]) under their best settings.

• We design our regularization method to be an easy-to-use

and general tool. We also provide guidance on setting

the appropriate hyper-parameters for different kinds of

models.

The remainder of the paper is structured as follows. Section

II gives some related background on Bayesian interpretation

of regularization, GM and several useful priors. Section III

introduces our proposed GM regularization method. Section

IV introduces our regularization tool as a flexible tool, and

Section V reports the experimental results. Related work is

reviewed in Section VI and finally Section VII concludes this

paper.

486

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TABLE OF SYMBOLS

Symbol Definition
M number of features

N number of samples

x(n) ∈ RM×1 features of the n-th sample in the training set

y(n) label of the n-th sample in the training set

w ∈ RM×1 model parameter

D (x(n), y(n))
N

n=1, features/label pairs
in the training set

K number of Gaussian components

π
[π1, π2, ..., πk]

T , mixing coefficient

(satisfy the constraint
∑K

k=1 πk = 1)

λ
[λ1, λ2, ..., λk]

T , precision
(inverse of variance)

N (x|μk, λk) Gaussian distribution of the k-th Gaussian component

α [α1, ..., αK]T , parameters of Dirichlet distribution

L learning rate

B the number of mini batches in the training set

Ig GM parameter update interval

Im model parameter update interval

E
number of first few epochs when lazy update

is not employed

II. PRELIMINARIES

In this section, we discuss the required prior knowledge of

regularization. Table I lists the definitions of symbols used in

this paper.

A. Bayesian Interpretation of Regularization

From the Bayesian perspective, regularization corresponds

to a prior distribution over the model parameter w. Let D
denote the observed data and w denote the model parameter.

According to Bayes’ Theorem, the posterior probability of

model parameter w is given by

p(w|D) = p(D|w)p(w)
p(D) (2)

where p(D|w) is the likelihood function and p(D) is a

constant.

For w, the probability is usually estimated using maximum

a posteior (MAP) estimation [27], [28]. The MAP problem

can be written as below.

wMAP = argmax
w

p(w|D)
= argmax

w
p(D|w)p(w)

= argmax
w

log p(D|w) + log p(w)

(3)

The term log p(w) is the log of model parameter prior

distribution and it is the regularization term (corresponds to

f(β,w) in Equation (1). Specifically, if p(w) is a Laplacian

distribution or Gaussian distribution, this term corresponds to

L1-norm and L2-norm regularization respectively. For Elastic-

net regularization, the prior distribution p(w) corresponds

to a compromise between the Laplacian and Gaussian dis-

tributions. For Huber-norm regularization, the corresponding

prior distribution is piecewise: Gaussian distribution for small

value parameters and Laplacian distribution for large value

parameters. In our work, we assume p(w) follows a GM

distribution where each Gaussian component is centered at

zero but may have different variances.

B. Gaussian Mixture Distribution

GM is a superposition of multiple Gaussian distributions.

In our GM regularization, we assume all dimensions of model

parameter w are sampled from the same one-dimensional

GM distribution. The one-dimensional GM distribution can

be expressed in the form below.

p(x) =
K∑

k=1

πkN (x|μk, λk) (4)

where K is the number of Gaussian components and πk is the

mixing coefficients which satisfy the constraint
∑K

k=1 πk = 1,

and N (x|μk, λk) is Gaussian distribution. μk is the mean and

λk is the precision (inverse of Gaussian variance) of the k-th

Gaussian component.

C. Dirichlet and Gamma Prior

The intermediate model parameter during training process

does not have a stationary distribution. Therefore, the actual

Gaussian components cannot be learned directly from this

intermediate model parameter. In order to learn the GM

prior for the model parameter w, two prior distributions are

introduced for mixing coefficients πk and Gaussian precisions

λk respectively.

Dirichlet distribution, which is used as the prior distribution

for mixing coefficients πk, is defined as follows.

Dir(π|α) = Γ(α0)

Γ(α1)...Γ(αK)

K∏

k=1

παk−1
k (5)

where α1, ..., αK are the parameters for the distribution, α0 =∑K
k=1 αk , and α denotes [α1, ..., αK]

T . Γ(x) is the Gamma

function. This prior distribution is introduced in order to learn

more Gaussian components.

As mentioned in Section II-A, the means of all the Gaussian

components of the GM distribution are set to zero. When

the mean of a Gaussian distribution is fixed, the Gamma

distribution is the conjugate prior for the Gaussian precision.

Gamma distribution is defined as follows.

Gam(λ|a, b) = 1

Γ(a)
baλa−1 exp (−bλ) (6)

where a and b are the two parameters for the distribution.

They control the shape and the decaying rate of the Gamma

distribution.

In the process of GM learning, a and b are used for

controlling the scale of λ. This is due to the fact that the values

of most dimensions of model parameter are small. If GM is

learned based on these dimensions of model parameter, large

λ will be learned which will impose very strong regularization

and that is harmful to the model. a and b can help to smoothen

the learning of λ.

III. PROPOSED ADAPTIVE REGULARIZATION

In this section, we introduce our proposed adaptive regular-

ization method based on GM.

487

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Overview of SGD and EM.

A. GM Regularization Term

In this paper, GM distribution is used as model parameter

prior. In particular, we assume that all the dimensions of the

model parameter are independent and identically distributed

(this assumption is commonly used in Gaussian prior, Lapla-

cian prior, etc.). Also, we assume all the dimensions follow a

GM distribution where each Gaussian component is centered

at zero but may have different variances.

D = (x(n), y(n))
N

n=1 with x(n) ∈ RM×1 is used to

denote the set of input/output pairs in the training set, w ∈
RM×1 denotes model parameter, where N is the number

of samples and M is the number of features. Mixing co-

efficients [π1, π2, ..., πk]
T are denoted as π and precisions

[λ1, λ2, ..., λk]
T as λ. Considering the prior distributions

introduced in Section II-C, the prior distribution of model

parameter w can then be written as below.

p(w,π,λ|α, a, b) = p(w|π,λ)p(π|α)p(λ|a, b)

=(

M∏

m=1

(
K∑

k=1

πkN (wm|0, λk)))Dir(π|α)
K∏

k=1

Gam(λk|a, b)
(7)

where K is the number of Gaussian components, p(π|α) and

p(λ|a, b) are the prior distributions for GM parameters π and

λ.

B. Loss Function – Optimization Function

In order to solve the MAP problem formulated in Equation

(3), given the GM regularization term, the loss function

(optimization function) is defined as below.

G = − log p(D|w)− log p(w,π,λ|α, a, b) (8)

where the first term is the negative log likelihood function

and the second term is the regularization term. This is the

function that is optimized for the prediction and classification

tasks.

C. Optimization

As mentioned in the introduction, for our adaptive reg-

ularization method, two sets of related parameters need to

be updated, namely, GM parameters and model parameter.

Typically, the model parameter is learned through SGD, which

is employed for updating model parameter here. For GM

parameters, a lightweight EM algorithm is designed. Fig. 2

shows how SGD interacts with EM in our update method.

After both kinds of parameters are initialized, regularization

based on GM is calculated. The calculated regularization

then affects model parameter through SGD. After the model

parameter is updated via an SGD step, one step of EM is

employed to update the GM based on the updated model

parameter. Subsequently, a new regularization is calculated for

the model parameter. This process iterates until the algorithm

converges.

1) Responsibility Function: Responsibility function of the

k-th Gaussian component for the m-th dimension of model

parameter, wm, is defined as follows.

rk(wm) =
πkpk(wm)∑K
j=1 πjpj(wm)

(9)

where pk(wm) is the probability density of wm under Gaussian

component k. This function calculates the conditional proba-

bility that a particular dimension of w, wm, is generated by a

particular Gaussian component k. This responsibility function

is used for calculating model parameter gradients and GM

parameter update formulas introduced below.

2) Gradient Descent for Model Parameter: When GM

parameters are fixed, gradient descent method is used to update

model parameter w. The gradient for the m-th dimension of

model parameter w with respect to G is given by

∂G

∂wm
=
− log p(D|w)

∂wm
+

K∑

k=1

(rk(wm)(λkwm)) (10)

where x
(n)
m is the m-th dimension of sample n. For simplicity,

we denote the first term as the gll (all the dimensions) and the

second term as the greg (all the dimensions).

The greg is a weighted sum of the product of Gaussian

precision value and the model parameter value. The responsi-

bility function rk(wm) determines the weighting value. This

equation shows the regularization effect is a collective effect

of different Gaussian components.

Since the probability density function pk(wm) is in the

form of exponential function, it affects the responsibility

function significantly. This provides an opportunity for giving

different regularization strength to different dimensions of

model parameter. For areas that are near zero, the Gaussian

component that has the largest precision value dominates

other Gaussian components. Consequently, for dimensions of

model parameter with small values, the regularization is strong

because it is mainly imposed by this Gaussian component with

the largest precision value. On the contrary, for dimensions of

model parameter with large values, the regularization is weak.

3) Update for GM Parameters: In this section, the update

formulas for GM parameters π and λ are introduced.

The derivatives for the Gaussian precisions and mixing

coefficients are as follows.

∂G

∂λk
= −(a− 1

λk
− b)−

M∑

m=1

rk(wm)(
1

2λk
− w2

m

2
) (11)

∂G

∂πk
= −αk − 1

πk
−

M∑

m=1

rk(wm)

πk
(12)

488

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

where λk and πk are the k-th dimension of λ and π.

The second term of ∂G
∂λk

is a weighted sum of the difference

between squared model parameter and the variance of GM

distribution. The first term is controlled by the GM hyper-

parameters a and b.
Given fixed responsibility values, the minimizer for λk and

πk can be obtained from Equation (11) and Equation (12).

Deriving the update formula for λk is straightforward. Setting

Equation (11) to zero gives the following equation.

λk =
2(a− 1) +

∑M
m=1 rk(wm)

2b+
∑M

m=1 rk(wm)w2
m

(13)

Here 2(a− 1) and 2b work as smoothing terms which corre-

spond to adding ”pseudo” model parameter to the k-th cluster.

Since
∑M

m=1 rk(wm) corresponds to the responsibil-

ity of the k-th Gaussian component. The magnitude of∑M
m=1 rk(wm) is the same as the number of dimensions

of model parameter (We use M to denote the number of

dimensions of model parameter). Inspired by this observation,

b is set as a proportional function to M . a plays a similar role

as b and fine-tunes the value of learned λ. For a, the proportion

with b affects the magnitude of the learned λ. So a is set as

a proportional function to b. But since
∑M

m=1 rk(wm) plays

the major role in the numerator of Equation (13), the setting

of a is not so significant.

For mixing coefficient π, deriving the update formula is

a bit complex because the constraint
∑K

k=1 πk = 1 must be

satisfied. Thus a Lagrange multiplier has to be used here. The

Lagrangian of the loss function is defined as follows.

L = G+ λlag(

K∑

k=1

πk − 1) (14)

where λlag is the Lagrange multiplier. Set the derivatives of

L with respect to πk and λlag to zero:

∂L

∂πk
= −αk − 1

πk
−

M∑

m=1

rk(wm)

πk
+ λlag = 0 (15)

∂L

∂λlag
=

K∑

k=1

πk − 1 = 0 (16)

Solving Equation (15) and Equation (16), the update formula

for πk can be given as follows.

πk =

∑M
m=1 rk(wm) + (αk − 1)

M +
∑K

j=1(αj − 1)
(17)

where πk is the k-th dimension of π.

This equation shows that α greatly affects the number of

Gaussian components learned. If α is large, then most probably

one Gaussian will be learned because all dimensions of π will

be the same. Typically, α is set to the power of M (e.g., M0.5).

Given Equation (9), (10), (17) and (13), responsibility

values can be computed and then model parameter w can be

updated. After the model parameter is updated, the values for

GM parameters λ and π can be updated subsequently. The

procedure of updating model parameter and GM parameters

are shown in Algorithm 1, in which L is the learning rate for

SGD.

Algorithm 1 Update for GM Regularization with SGD and

EM
Input: w, α, a, b, π, λ, L

1: initialize: it← 0
2: while not converged do
3: Compute gll

/* E-step */

4: Compute responsibility function based on Equation (9)

5: Compute ∂G
∂w based on Equation (10)

/* M-step */

6: Compute π and λ based on Equation (17) and (13)

/* SGD step */

7: w(it+1) ← w(it) − L ∂G
∂w

8: it← it+ 1
9: end while

D. Lazy Update

Calculating greg and updating GM parameters π,λ are

time-consuming because the Gaussian Probability Density

Function needs to be computed. This is the bottleneck of the

algorithm.

In order to reduce the computational time, a lazy update

method is employed for models with large number of param-

eters. The intuition for lazy update is explained as follows.

Both greg and GM parameters π,λ do not change too much

after the first few epochs. Consequently, they do not need to

be updated in every iteration after the first few epochs.

Here, E is denoted as the number of the first few epochs

when lazy update is not employed, Ig and Im as the update

interval for GM parameters and model parameter. greg is

updated every iteration when the epoch number is less than E.

Thereafter, greg is updated every Im steps as shown in line

6 of Algorithm 2. Here, B is the number of mini-batches in

the training set. When ∂G
∂wm

is calculated, the greg calculated

in E-step is used . Since E-step is not carried out in every

iteration, thus greg is not updated in every iteration. For GM

parameters π and λ, after E epochs, they are updated every

Ig steps.

IV. REGULARIZATION TOOL IN DATA ANALYTICS

PIPELINE

As mentioned earlier and shown in Figure 1, our proposed

regularization method is designed as a general and flexible tool

that can be easily integrated with the deep learning platform

in the big data analytics pipeline.

In our implementation, we implemented our regularization

tool with machine learning libraries in python as well as

integrated our regularization tool with deep learning models

on an open-source deep learning platform Apache Singa [20].

Key Functions. The key functions of GM regularization

tool include:

489

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Lazy Update for GM Regularization

Input: w, α, a, b, π, λ, L, Ig , Im, E, B
1: initialize: it← 0, epoch it← 0
2: while not converged do
3: Compute gll

/* E-step */

4: if epoch it < E or it mod Im = 0 then
5: Compute responsibility function based on Equation

(9)

6: Compute greg
7: end if
8: Compute ∂G

∂wm
based on Equation (10)

/* M-step */

9: if epoch it < E or it mod Ig = 0 then
10: Compute π and λ according to Equation (17) and

(13)

11: end if
/* SGD-step */

12: w(it+1) ← w
(it)
j - L ∂G

∂w
13: it← it+ 1
14: if epoch it mod B = 0 then
15: epoch it← epoch it+ 1
16: end if
17: end while

• calResponsibility(): calculating responsibility values.

• calcRegGrad(): calculate greg
• uptGMParam(): update GM parameters using EM algo-

rithm

With this tool, a model only needs to input intermediate

model parameter w. In turn, our GM regularization tool calcu-

lates and returns the gradient with respect to the regularization

term, greg. It is sufficiently general to support different types

of models.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed

GM regularization method through experiments using standard

benchmark datasets. The baseline regularization methods in-

clude L1-norm regularization (L1 reg) [24], L2-norm regu-

larization (L2 reg) [14], Elastic-net (Elastic-net reg) [25] and

Huber-norm regularization (Huber reg) [26].

TABLE II
UCI DATASET CHARACTERISTICS

Dataset # Samples # Features Feature Type
breast-canc 699 81 categorical

breast-canc-dia 569 30 continuous

breast-canc-pro 198 33 continuous

climate-model 540 18 continuous

congress-voting 435 32 categorical

conn-sonar 208 60 continuous

credit-approval 690 42 combined

cylindar-bands 541 93 combined

hepatitis 155 34 combined

horse-colic 368 58 combined

ionosphere 351 33 combined

A. Experiment Settings

Datasets. Experiments on both real datasets and machine

learning/deep learning benchmark datasets are conducted.

1) CIFAR-10 1. This is a benchmark dataset for image classi-

fication, which consists of 60000 32 × 32 colour images in

10 classes, with 6000 images per class and there are 50000

training images and 10000 test images in this dataset.

2) Hospital Frequent Admitter (Hosp-FA) dataset. This is a real

dataset from a hospital, which consists of inpatient visits (i.e.,

cases) of patients, including various types of medical features

(i.e., diagnosis, demographics, etc.) On this dataset, we predict

whether a patient will be readmitted into hospital within 30

days. This dataset consists of 1755 patient samples each of

which has 375 features. Dealing with medical features which

have varying numbers of observations is challenging. In this

dataset, there are different kinds of features, e.g., predictive

and noisy features. The distributions of model parameter that

corresponds to different kinds of features are quite different.

To be specific, the distribution of model parameter that cor-

responds to predictive features has a larger variance while

the distribution of model parameter that corresponds to noisy

features has a smaller variance.

3) UCI machine learning repository datasets. These are the

benchmark datasets from the UCI machine learning reposi-

tory [29]. These datasets are also referred to as UCI datasets.

To avoid selection bias, we choose the first 11 (in alphabetical

order) binary classification datasets (by skipping those datasets

where all regularization methods achieve perfect performance).

One-hot encoding method is used to transform the categorical

features to binary features and we preprocess the continuous

features to have zero mean and unit variance. Missing values

in the categorical features are assigned a separate class and

missing values in the continuous features are imputed by the

mean value.

Table II shows the characteristics of UCI datasets, where #

Features is the number of features after one-hot encoding. The

features of this dataset can be either, categorical, continuous

or combined (the dataset has both categorical and continuous

features). Most of these datasets have less than 1000 samples,

but the number of features is large because the ratios of #

Features to # Samples of most datasets are more than 10%.

Evaluation metric. We use accuracy, the ratio of correct

predictions, to measure the classification performance of a

regularization method.

Deep Learning Model Structures. Table III shows the model

structures for our deep learning models. For Alex-CIFAR-10,

the first convolutional layer filters the 32 × 32 × 3 input

images with 32 kernels of size 5 × 5 × 3 with a stride of

1 pixel. The second convolutional layer has 32 kernels of

size 5 × 5 × 32 and the third convolutional layer has 64

kernels of size 5 × 5 × 32. The last layer is the 10-way

fully-connected softmax layer. pooling layer, relu layer and

LRN layer [6] are inserted between convolutional layers. The

number of dimensions for model parameter is 89440.

1https://www.cs.toronto.edu/ kriz/cifar.html

490

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

TABLE III
DEEP LEARNING MODEL STRUCTURES

Model Layers

Alex-CIFAR-10

5 × 5, 32
MaxPooling
RELU
LRN

⎫⎪⎬
⎪⎭
× 1

5 × 5, 32
RELU
AvgPooling
LRN

⎫⎪⎬
⎪⎭
× 1

5 × 5, 64
RELU
AvgPooling

⎫⎬
⎭ × 1 Softmax

ResNet
3 × 3, 16
BN
RELU

⎫⎬
⎭ × 1

3 × 3, 16
BN
RELU
3 × 3, 16

⎫⎪⎬
⎪⎭
× 3 3 × 3, 32

3 × 3, 32
BN
RELU
3 × 3, 32

⎫⎪⎬
⎪⎭
× 3 3 × 3, 64

3 × 3, 64
BN
RELU
3 × 3, 64

⎫⎪⎬
⎪⎭
× 3 Avgpooling Softmax

The second model is the twenty-layer ResNet [9], which is

a representative model with a large number of stacked layers.

We experiment on this model to study the behavior of our

GM regularization in complicated and deep neural networks.

The inputs of the network are 32 × 32 images, with the per-

pixel mean subtracted. The first layer is 3 × 3 convolutions,

followed by a stack of 6n (n = 3 here) layers with 3 × 3

convolutions with 16, 32, 64 filters respectively. The network

ends with a 10-way softmax function. In total, there are 20

stacked weighted layers. The number of dimensions of model

parameter is 270896.

For these two models, the momentum is set to 0.9, the

learning rate is 0.001 for Alex-CIFAR-10 and 0.1 for ResNet.

These hyper-parameters are set to be the same as [6] and [9]

respectively.

Data augmentation is performed for ResNet but not for

Alex-CIFAR-10. By doing this, we aim to show the effec-

tiveness of our proposed regularization both on a simple

structure neural network without any data augmentation and

on a complex neural network with data augmentation.

Environment. Logistic Regression (LR) is implemented using

python and Convolutional Neural Network (CNN) is imple-

mented on Apache Singa [20]. Experiments are run on a server

equipped with Intel i7-4930K CPU and three GTX Titan X

GPU cards.

B. Case Study: Adaptive Regularization Tool on Deep Learn-
ing Models

In this section, we show a case study on how our adaptive

regularization tool can be used to learn Gaussian Mixtures in

deep learning models and how appropriate regularization is

generated by our adaptive regularization tool. Alex-CIFAR-10

and ResNet are used in this section.

1) Easy Setting of GM Hyper-parameters: The setting of

GM hyper-parameters is straightforward. It can be automat-

ically defined by the charactersitcs of the dataset. The same

setting of GM prior hyperparameters a, b, α and K (initial

number of Gaussian components) is used for different layers

and each layer is enabled to adaptively learn its best GM as

the regularization term.

Initial Number of Gaussian Components. The initial num-

ber of Gaussian components, K, is fixed to 4. An interesting

observation is that our GM regularization learns one or two

Gaussian components for different models finally. This is be-

cause some of the Gaussian components are gradually merged

to one during the GM learning process. The final number

of Gaussian components (whether one or two) is learned

automatically. We evaluated with different initial number of

Gaussian components and found 4 to be the best according to

the experimental results.

Hyper-parameters a, b and α. b is set to γM , where M
is the number of model parameter dimensions for each layer,

and the parameter grid for γ is [0.0002, 0.0005, 0.001, 0.002,

0.005, 0.01, 0.02, 0.05]. As mentioned in Section III-C3, a is

not a significant parameter, it is set to 1 + 10−2 b or 1 + 10−1

b. For α, it is set to M0.5.

TABLE IV
LEARNED REGULARIZATION FOR ALEX-CIFAR-10

GM Regularization
Layer Name π λ
conv1/weight [0.216, 0.784] [10.727, 835.959]

conv2/weight [0.019, 0.981] [0.640, 1904.024]

conv3/weight [0.013, 0.987] [0.095, 2017.931]

dense/weight [0.036, 0.964] [3.939, 1277.578]

L2 Reg (expert-tuned)
Layer Name π λ
conv1/weight [1.000] [200.000]

conv2/weight [1.000] [200.000]

conv3/weight [1.000] [200.000]

dense/weight [1.000] [50000.000]

2) Learned GM Regularization: Table IV and V show the

learned Gaussian Mixtures for the Alex-CIFAR-10 and ResNet

respectively. Since ResNet has 20 layers, only the learned π
and λ for the representative layers are shown. Layers with

asterisk mean there are several other layers that have very

similar π and λ.

Compared to the baseline method (L2 Reg) where λ is

manually set, our method can adaptively learn different GM

parameters π and λ for different layers automatically while

we apply the same rule of setting hyper-parameters for the

GMs of different layers. This result confirms that our GM

regularization is adaptive to the model parameter distributions

of different layers so that the best regularization for each

layer can be learned. The two Gaussian components learned

for each layer correspond to informative and non-informative

features respectively. The learned λ for Alex-CIFAR-10 is

larger than that of ResNet, which indicates that Alex-CIFAR-

10 needs stronger regularization; this is due to lack of Batch-

normalization (BN) layers in the Alex-CIFAR-10. For ResNet,

many layers have similar π and λ because of the GM

initialization method which is discussed in detail in Section

V-E. According to [30], the initialization distributions of model

parameter between two convolutional layers are the same if the

491

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

TABLE V
REPRESENTATIVE LEARNED REGULARIZATION FOR RESNET

GM Regularization
Layer Name π λ
conv1/weight [0.377, 0.623] [0.301, 8.106]

2a-br1-conv1/weight [0.066, 0.934] [0.149, 22.620]

2a-br1-conv2/weight* [0.062, 0.938] [0.145, 23.016]

3a-br2-conv/weight [0.152, 0.848] [0.195, 22.010]

3a-br1-conv1/weight [0.047, 0.953] [0.141, 22.824]

3a-br1-conv2/weight* [0.032, 0.968] [0.121, 23.617]

4a-br2-conv/weight [0.068, 0.932] [0.157, 22.733]

4a-br1-conv1/weight [0.023, 0.977] [0.114, 23.868]

4a-br1-conv2/weight* [0.016, 0.984] [0.109, 24.396]

ip5/weight [0.230, 0.770] [0.865, 6.979]

L2 Reg
Layer Name π λ

All Layers [1.000] [50.000]

TABLE VI
ACCURACY ON DEEP LEARNING MODEL

Alex-CIFAR-10 ResNet
no regularization 0.777 0.901

L2 Reg 0.822(expert-tuned) 0.909

GM regularization 0.830 0.921

two layers have the same number of filters. As shown in Table

III, there are three stacks of filters, 16, 32 and 64 respectively.

The layers in each stack have the same initialized Gaussian

variance, leading to similar learned GM parameters λ and π.

3) Comparison on Accuracy: In this experiment, we study

the effects of GM regularization on the predictive ability of

deep learning models and the results are summarized in Table

VI. For the Alex-CIFAR-10, the L2 Reg is carefully tuned

by the human expert, where the strengths of regularization are

different for different layers. L2 Reg can improve the accuracy

from 0.777 (without any regularization) to 0.822, which indi-

cates the importance of regularization in deep learning models.

Our GM regularization can further improve the expert-tuned

model from 0.822 to 0.83 in terms of accuracy. This result

confirms the advantage of adaptive GM regularization over

the manually-tuned regularization.

For the ResNet, since BN layer serves as a form of

regularization, therefore the improvement of L2 Reg over no

regularization is not so dramatic as that in Alex-CIFAR-10.

However, our model can still further improve L2 Reg from

0.909 to 0.921. This result is nearly the same as the result of a

ResNet with 1202 layers [9], which confirms the effectiveness

of our proposed GM regularization.

C. Comparison on Small Dataset

In this section, we evaluate our GM regularization with

Logistic Regression model on one real hospital readmission

dataset and 11 machine learning benchmark datasets. Since the

number of samples is small, for each dataset, 5 subsamples via

stratified sampling with a 80-20 train test split are obtained.

The average and standard errors of accuracies under the best

parameter setting, determined by cross validation, are shown in

Table VII. The highest average accuracy results are indicated

in bold. The result shows that GM regularization method

outperforms the other four regularization methods in 9 out of

12 datasets and achieves the same best performance as other

baseline methods in two datasets. GM regularization does not

prevail against the baseline methods only in breast-canc-dia

dataset; For this dataset, our adaptive GM regularization is

comparable with the baselines and our standard errors are

smaller than Huber Reg. These results again provide clear

evidence for the performance benefits of our adaptive GM

regularization.

Compared with L1-norm regularization method, GM regu-

larization achieves better results in all the datasets. This is

because L1-norm regularization tends to reduce the model

parameter of sparse and noisy features to zero, which totally

removes the effect of these features. On the contrary, GM

regularization method learns a small variance Gaussian com-

ponent for these features so that the effects of these features

are retained instead of being removed.

L2-norm regularization imposes the same regularization

strength for all the features, thus it is likely that the useful fea-

tures with large model parameter values are over-regularized.

In contrast, GM regularization does not regularize these useful

features strongly since a large variance Gaussian component

is learned to exert weak regularization.

Both Elastic-net and Huber-norm regularization tradeoff

between L1-norm and L2-norm regularization. For Elastic-

net, it uses a parameter l1 ratio to control the proportion

of L1-norm regularization and L2-norm regularization. By

tuning this parameter, Elastic-net can enable L1-norm or L2-

norm regularization to dominate. In this way, Elastic-net can

achieve better results than L1-norm regularization and L2-

norm regularization for nearly all the datasets.

Huber-norm regularization is in the form of a piecewise

function; that is, Huber-norm regularization is L2-norm reg-

ularization for small model parameter and it is L1-norm

regularization for large model parameter. The two parameters

μ and λ control the threshold between L1-norm and L2-

nomr regularization. By tuning the threshold value, Huber-

norm regularization can tradeoff between L1-norm and L2-

norm regularization, which enables Huber-norm regularization

to dominate L1-norm and L2-norm regularization method.

By assuming a GM prior distribution over model parameter,

our adaptive GM regularization method can model the model

parameter prior better thus imposing more appropriate regular-

ization. It learns two Gaussian components as model parameter

prior distribution to regularize both useful and noisy features,

imposing different strengths of regularization on these two

kinds of features, which results in better performance than

the baselines. Details on learned Gaussian components are

discussed in Section V-D.

D. Learned Gaussian Components for Small Datasets

In this section, we evaluate the adaptively learned Gaussian

components for two representative small datasets, horse-colic

and conn-sonar dataset in Fig. 3. For both datasets, two

Gaussian components are learned. Points A and B labeled

in the figure show where two Gaussian components have the

same mixture probability density. In both figures, the small

492

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
COMPARISON ON ACCURACIES AND STANDARD ERRORS

Method L1 Reg L2 Reg Elastic-net Reg Huber Reg GM Reg
Hosp-FA 0.844 ± 0.023 0.842 ± 0.021 0.847 ± 0.022 0.845 ± 0.022 0.848 ± 0.021

breast-canc 0.963 ± 0.012 0.969 ± 0.012 0.970 ± 0.011 0.970 ± 0.011 0.970 ± 0.011
breast-canc-dia 0.972 ± 0.012 0.979 ± 0.008 0.981 ± 0.007 0.982 ± 0.011 0.981 ± 0.007

breast-canc-pro 0.818 ± 0.044 0.834 ± 0.050 0.839 ± 0.040 0.834 ± 0.051 0.859 ± 0.036
climate-model 0.965 ± 0.010 0.963 ± 0.013 0.965 ± 0.010 0.967 ± 0.011 0.969 ± 0.011

congress-voting 0.968 ± 0.015 0.970 ± 0.015 0.972 ± 0.017 0.972 ± 0.013 0.977 ± 0.018
conn-sonar 0.803 ± 0.034 0.832 ± 0.042 0.837 ± 0.050 0.830 ± 0.052 0.847 ± 0.057

credit-approval 0.867 ± 0.032 0.868 ± 0.022 0.875 ± 0.032 0.874 ± 0.028 0.878 ± 0.033
cylindar-bands 0.782 ± 0.038 0.791 ± 0.017 0.795 ± 0.020 0.791 ± 0.023 0.798 ± 0.016

hepatitis 0.866 ± 0.067 0.898 ± 0.040 0.904 ± 0.038 0.898 ± 0.040 0.904 ± 0.038
horse-colic 0.835 ± 0.064 0.842 ± 0.040 0.864 ± 0.040 0.859 ± 0.060 0.870 ± 0.047
ionosphere 0.906 ± 0.029 0.903 ± 0.028 0.909 ± 0.027 0.909 ± 0.037 0.920 ± 0.024

-2.0 -1.5 -1.0 A 0.0 B 1.0 1.5 2.0

Model Parameter

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ix
tu
re

P
ro
b
a
b
il
it
y
D
e
n
s
it
y

(a) Horse-colic dataset

-15 -10 -5 A 0 B 5 10 15

Model Parameter

0.00

0.05

0.10

0.15

0.20

0.25

M
ix
tu
re

P
ro
b
a
b
il
it
y
D
e
n
s
it
y

(b) Conn-sonar dataset

Fig. 3. The horizontal axis indicates model parameter w and the vertical
axis shows the mixture probability density. The GM parameters for horse-
colic dataset are π = [0.326 0.674], λ = [1.270 31.295], and for conn-sonar
dataset are π = [0.345, 0.655], λ = [0.062, 0.607].

variance Gaussian component dominates in the area near zero.

When model parameter is getting beyond A/B points, the large

variance Gaussian component begins to dominate. This shows

that our GM regularization exerts strong effects on small value

model parameter which corresponds to noisy features and ex-

erts less strong regularization on large value model parameter

which corresponds to useful features. Another observation is

that the Gaussian shapes of the two figures differ a lot, which

illustrates our adaptive GM regularization method can learn

different GM distributions for different datasets. The variance

of the small variance Gaussian in horse-colic dataset is much

smaller than that in conn-sonar dataset, this shows the model

parameter corresponds to the noisy features in horse-colic

dataset is much smaller and needs to be regularized more

strongly.

TABLE VIII
AVERAGE ACCURACY FOR DIFFERENT INITIALIZATION METHODS

Method Alex-CIFAR-10 ResNet
linear 0.819 0.918

identical 0.802 0.912

proportional 0.817 0.916

E. Effectiveness of Proposed Initialization Methods for GM

It is well known that fitting GM can be very sensitive to

poor initial conditions. In this section, several proposed ini-

tialization methods for GM are compared. For these proposed

methods, the initialization of GM is related to the initialization

of model parameter. In both Deep Learning model and Logistic

Regression model, the model parameter is initialized with a

zero-mean Gaussian distribution. The variances of different

 0.785

 0.79

 0.795

 0.8

 0.805

 0.81

 0.815

 0.82

 0.825

 0.83

 0.835

0.3 0.5 0.7 0.9

A
c
c
u
ra

c
y

Dirichlet Prior Parameter α

linear init
identical init

proportional init

(a) Alex-CIFAR-10

 0.902

 0.904

 0.906

 0.908

 0.91

 0.912

 0.914

 0.916

 0.918

 0.92

 0.922

 0.924

0.3 0.5 0.7 0.9

A
c
c
u
ra

c
y

Dirichlet Prior Parameter α

linear init
identical init

proportional init

(b) ResNet

Fig. 4. Accuracy for different alpha values and initialization methods.

components of the initialized GM should be larger than the

variance of the initialized model parameter so that the initial

regularization is not too strong. We shall consider three ini-

tialization methods, namely identical, linear and proportional.

For ease of explanation, in the remaining of this paragraph, we

work with precision, the inverse of variance. In the identical

method, the precisions of different GM components are set

identically to min. For ResNet, since the precisions of each

layer’s initialized model parameter are different, min is set

to one-tenth of the initialized model parameter precisions.

For other models, since the precisions of initialized model

parameter is 100, all the min values are set to 10. In the second

method, linear initialization, the precisions of the K initial GM

components are linearly spaced between [min, K × min].

The third initialization method is proportional initialization.

In this method, the precision of the latter GM component is

set to be two times the precision of the former component.

The precision of the first GM component is min. Both linear

and proportional methods cause the initial responsibility of

different GM components to be different.

As mentioned in Section II-C, α also affects the number

of Gaussian components learned. We therefore are interested

in investigating the effects of GM initialization methods with

respect to different α values. Fig. 4 shows the accuracy of

different combinations of GM initialization methods and α.

The results show, for both Alex-CIFAR-10 and ResNet, linear

and proportional initialization methods perform far better than

identical initialization method. Table VIII shows the average

accuracy of different GM initialization methods over different

α values. The average accuracy of linear and proportional

initialization methods are also far better than identical ini-

tialization method, mainly due to the final state. For Alex-

CIFAR-10 and ResNet, the final state of the learned GM is two

493

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

 0

 1000

 2000

 3000

 4000

 5000

20 40 60 80 100
120

140
160

T
im

e
 (

S
e
c
o
n
d
s
)

Epoch

I
m

 = 1
I
m

 = 2
I
m

 = 5
I
m

 = 10
I
m

 = 20
I
m

 = 50
baseline

(a) Alex-CIFAR-10

 0

 5000

 10000

 15000

 20000

 25000

20 40 60 80 100
120

140
160

180
200

T
im

e
 (

S
e
c
o
n
d
s
)

Epoch

I
m

 = 1
I
m

 = 2
I
m

 = 5
I
m

 = 10
I
m

 = 20
I
m

 = 50
baseline

(b) ResNet

 0

 5000

 10000

 15000

 20000

 25000

I
m =1

I
m =2

I
m =5

I
m =10

I
m =20

I
m =50

baseline

T
im

e
 (

S
e

c
o

n
d

s
)

Update Interval I
m

Alexnet-CIFAR-10
ResNet

(c) Convergence Time

Fig. 5. Time for different update interval values.

Gaussian components. If the GM components have different

variances initially, they will converge to the final state faster.

Another observation is that linear initialization is better than

proportional initialization, because linear initialization method

generates Gaussian components that are more scattered. When

α is set to 0.5, we get the best performance as the GM learns

multiple Gaussian components that lead to faster convergence.

F. Effectiveness of Lazy Update

In this experiment, we investigate the effect of GM param-

eter update interval Ig , model parameter update interval Im
and number of the first few epochs when the lazy update is

not employed, E.

1) Performance of Update Interval Values: Figures 5(a)(b)

show the training elapsed time with respect to the number

of epochs for different Im values and the baseline (L2 Reg).

In this experiment, we set Ig = Im and E to two so that

after two epochs, the increase of time is mainly due to lazy

update. The results show that all six settings grow linearly in

time as the number of epochs increases, which confirm the

effectiveness of our proposed lazy update algorithm. We can

observe that the algorithm with Im = 1, where no lazy update

is employed, takes the longest time for convergence and the

algorithm with Im = 50 takes the shortest. This is because the

algorithm with larger Im updates GM parameters and model

parameter less frequently. Fig. 5(c) shows the convergence

time for different Im values and the baseline (L2 Reg). The

number of epochs for convergence is 160 for Alex-CIFAR-

10 and 200 for ResNet. In this experiment, we set Im = Ig .

Among the six settings, the algorithm with Im=1 takes the

longest time and the algorithm with Im=50 takes the shortest.

This is consistent with the observations in Figures 5(a)(b). For

both Alex-CIFAR-10 and ResNet, algorithm with Im=50 takes

almost one fourth the time of the algorithm with Im=1, where

no lazy update is employed, without drop in model accuracy.

This again shows the effectiveness of lazy update algorithm.

2) Performance of GM Parameter Update Interval Values:
Another factor that can further reduce time is Ig because

the update of GM parameters includes calculating the re-

sponsibility value as well as calculating new λ and π using

the high-dimensional model parameter vector, which is quite

time-consuming. Considering the fact that the GM parameters

converge faster than the model parameter, we set Ig larger

 940

 950

 960

 970

 980

 990

 1000

50&50 100&50 200&50 500&50

T
im

e
(S

e
c
o

n
d

s
)

Update Interval I
g
 & I

m

(a) Alex-CIFAR-10

 5550

 5600

 5650

 5700

 5750

 5800

 5850

 5900

50&50 100&50 200&50 500&50

T
im

e
(S

e
c
o

n
d

s
)

Update Interval I
g
 & I

m

(b) ResNet

Fig. 6. Time for different combinations of Ig and Im.

than Im. Fig. 6 (a)(b) show the convergence time for different

combinations of Ig and Im, where Im is fixed to 50 and Ig is

increased from 50 to 500. Fig. 6 shows that the convergence

time can be further reduced if Ig is increased.

3) Performance of E Values: As mentioned in Section

III-D, the number of first few epochs when the lazy update

is not employed, E, is another factor that affects the time

and accuracy. Fig. 7 (a) (b) show the training elapsed time

with respect to epochs for different E values and baseline (L2

Reg). The results show that the lazy update algorithm takes

more time for computation of each epoch before E epochs,

since updating model parameter and GM parameters each step

consumes more time than not updating them. After 70 epochs,

we can observe the algorithm with E=50 takes the most time

for computation while the algorithm with E=1 takes the least.

This is because the algorithm with larger E takes more time

in the first E epochs when lazy update is not employed.

Fig. 7(c) shows the convergence time for different E values

and baseline. The result shows that the decrease of time is

proportional to the decrease of E. When E is decreased to 1,

the convergence time consumed is only about 70% the time

for algorithm with E=50, without drop in model accuracy. By

choosing a relatively small E value, we can obtain a high-

performance model using short training time.

VI. RELATED WORK

Our work extends two veins of research: bayesian interpre-

tation of regularization and hyper-parameter optimization.

A. Bayesian Interpretation of Regularization

Many regularization strategies can be interpreted as Max-

imum a posteriori (MAP) Bayesian inference [27], [28].

One of the most frequently used regularization methods is

494

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 10 15 20 25 30 35 40 45 50 55 60 65 70

T
im

e
 (

S
e
c
o
n
d
s
)

Epoch

E=50
E=20
E=10
E=5
E=2
E=1
baseline

(a) Alex-CIFAR-10

 0

 1000

 2000

 3000

 4000

 5000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

T
im

e
 (

S
e
c
o
n
d
s
)

Epoch

E=50
E=20
E=10
E=5
E=2
E=1
baseline

(b) ResNet

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

E=50
E=20

E=10
E=5

E=2
E=1

baseline

T
im

e
 (

S
e

c
o

n
d

s
)

Alex-CIFAR-10
ResNet

(c) Convergence Time

Fig. 7. Time for different E values.

L2-norm regularization [31], which is also known as weight

decay [32], ridge regression or Tikhonov regularization. L2-

norm regularization adds a quadratic term to the objective

function. The addition of this weight decay term shrinks

the value of model parameter. L2-norm regularization can be

regarded as MAP bayesian inference [27], [28] with Gaussian

prior on the model parameter. It is a special case of GM

regularization when the number of Gaussian components is

restricted to one.

While L2-norm regularization is the most common form

of regularization, another common method to regularize the

model is L1-norm regularization [27], which is also known as

Lasso [33]. L1-norm regularization is defined as adding the ab-

solute value of the model parameter to the objective function.

The L1-norm regularization forces insignificant dimensions of

model parameter to be zero, which is desirable in situations

where a sparse solution is preferable. L1-norm regularization

corresponds to a Laplacian prior on model parameter.

There are also many other forms of regularization target-

ing at different scenarios [26], [25]. For example, Huber-

norm regularization interpolates between L2-norm and L1-

norm regularization by using a piecewise function. Unlike L1-

norm regularization, Huber function is differentiable. Huber-

norm regularization also imposes less penalty on large model

parameter compared with L2-norm regularization. Recent ex-

periments [26] suggest that Huber-norm regularization is more

robust and can achieve higher accuracy in Logistic Regression.

Elastic-net regularization[25], [34] is another norm regulariza-

tion method combining L1-norm and L2-norm regularization.

The Elastic-net regularization encourages a grouping effect,

where strongly correlated predictors tend to be in or out of the

model together. In circumstances where the number of features

is much larger than observations, Elastic-net regularization

outperforms L1-norm regularization significantly.

Compared with Laplacian distribution and Gaussian dis-

tribution, GM provides a richer class of density models,

modelling the parameter prior better and thus imposing a

more appropriate regularization. Also, different from previous

works which define a specific regularization function, we

aim to develop an adaptive regularization method that can

learn the best regularization function. We assume the model

parameter follows a GM prior distribution which provides a

richer class of density models. This GM is learned adaptively

via a lightweight EM algorithm so that no painstaking ad-

hoc attempts need to be made in order to obtain the optimal

regularization function.

B. Hyper-parameter Optimization

Deciding the strength of regularization is typically modeled

as a hyper-parameter optimization problem [35], [36], [37].

Grid search [38] has long been a conventional method for

obtaining the regularization strength. This method, although

simple and easy to implement, is shown to be not efficient [39],

[38]. Random search improves grid search by randomly choos-

ing trials instead of trials on a grid [38].

Recently, it has been shown that methods which optimize

hyper-parameters in a more principled and automatic way

can obtain higher-quality hyper-parameters. Bayesian opti-

mization(BO) [35], [37] is one of these methods. The key

idea of BO is to view the hyper-parameter optimization as

the optimization of an unknown black box function, and

builds a probabilistic model for the black box function by

using multiple pairs of hyper-parameters and their correspond-

ing validation loss. One advantage of BO is that hyper-

parameters that need to be evaluated can be automatically

determined. In this manner, BO is able to find high-quality

hyper-parameters. The BO framework for hyper-parameter

optimization has several degrees of freedom to be instanti-

ated, such as initialization, the acquisition function and the

probabilistic model. Spearmint [37] and TPE [36] are two of

the popular methods under the BO framework. Although these

algorithms are widely used and shown to be effective in many

applications [36], [37], they can hardly scale up to handle

large numbers of hyper-parameters and are not efficient for

big datasets.

The key idea of our proposed adaptive GM regularization is

to learn the strength of regularization adaptively. Our method

is easy to scale up because of the efficient update method that

incorporates SGD and EM. Also, different from BO methods

which do not exploit the information of model parameter

directly, our method interacts with model parameter during

the whole training process.

495

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSIONS

In this paper, we propose an adaptive regularization method

based on GM to impose appropriate regularization on different

kinds of features. Dirichlet and Gamma prior distributions

are introduced for the GM parameters to control the learning

of mixing coefficients and the shapes of different Gaussian

components. We design a lightweight EM algorithm to update

GM parameters and the model parameter is learned under SGD

framework. In order to reduce computational costs, we design

a lazy update algorithm to reduce the computational time

by four times. Experiments show that our GM regularization

method yields better performance in terms of accuracy than

existing methods.

ACKNOWLEDGMENT

This work is supported by National Research Founda-

tion, Prime Ministers Office, Singapore under its Competitive

Research Programme (CRP Award No. NRF-CRP8-2011-

08) and National Basic Research Program (973 Program,

No.2015CB352400).

REFERENCES

[1] C. Zhang, A. Kumar, and C. Ré, “Materialization optimizations for
feature selection workloads,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2014, pp. 265–276.

[2] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C. Ooi, and K.-L. Tan,
“Database meets deep learning: Challenges and opportunities,” SIGMOD
Record, vol. 45, no. 2, pp. 17–22, 2016.

[3] F. Yang, F. Shang, Y. Huang, J. Cheng, J. Li, Y. Zhao, and R. Zhao,
“Lftf: A framework for efficient tensor analytics at scale,” Proceedings
of the VLDB Endowment, vol. 10, no. 7, pp. 745–756, 2017.

[4] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré, “Incremental
knowledge base construction using deepdive,” Proceedings of the VLDB
Endowment, vol. 8, no. 11, pp. 1310–1321, 2015.

[5] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
Optimizing neural network queries over video at scale,” Proceedings of
the VLDB Endowment, vol. 10, no. 11, pp. 1586–1597, 2017.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[7] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision, 2014, pp.
818–833.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[11] W. Wang, X. Yang, B. C. Ooi, D. Zhang, and Y. Zhuang, “Effective
deep learning-based multi-modal retrieval,” The VLDB Journal, vol. 25,
no. 1, pp. 79–101, 2016.

[12] W. Wang, B. C. Ooi, X. Yang, D. Zhang, and Y. Zhuang, “Effective
multi-modal retrieval based on stacked auto-encoders,” Proceedings of
the VLDB Endowment, vol. 7, no. 8, pp. 649–660, 2014.

[13] T. Dietterich, “Overfitting and undercomputing in machine learning,”
ACM computing surveys, vol. 27, no. 3, pp. 326–327, 1995.

[14] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer New York Inc., 2001.

[15] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[16] S. Balakrishnan, M. J. Wainwright, B. Yu et al., “Statistical guarantees
for the em algorithm: From population to sample-based analysis,” The
Annals of Statistics, vol. 45, no. 1, pp. 77–120, 2017.

[17] C. Tan, S. Ma, Y.-H. Dai, and Y. Qian, “Barzilai-borwein step size
for stochastic gradient descent,” in Advances in Neural Information
Processing Systems, 2016, pp. 685–693.

[18] C. Lee, Z. Luo, K. Y. Ngiam, M. Zhang, K. Zheng, G. Chen, B. C.
Ooi, and W. L. J. Yip, “Big healthcare data analytics: Challenges and
applications,” in Handbook of Large-Scale Distributed Computing in
Smart Healthcare. Springer, 2017, pp. 11–41.

[19] D. Jiang, G. Chen, B. C. Ooi, K.-L. Tan, and S. Wu, “epic: an extensible
and scalable system for processing big data,” Proceedings of the VLDB
Endowment, vol. 7, no. 7, pp. 541–552, 2014.

[20] B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao,
Z. Luo, A. K. Tung, Y. Wang, Z. Xie, M. Zhang, and K. Zheng, “Singa:
A distributed deep learning platform,” in Proceedings of the 23rd ACM
International Conference on Multimedia, 2015, pp. 685–688.

[21] D. Jiang, Q. Cai, G. Chen, H. Jagadish, B. C. Ooi, K.-L. Tan, and A. K.
Tung, “Cohort query processing,” Proceedings of the VLDB Endowment,
vol. 10, no. 1, pp. 1–12, 2016.

[22] S. Wang, A. Dinh, Q. Lin, Z. Xie, M. Zhang, Q. Cai, G. Chen, W. Fu,
B. C. Ooi, P. Ruan et al., “Forkbase: An efficient storage engine for
blockchain and forkable applications,” arXiv preprint arXiv:1802.04949,
2018.

[23] J. Xu, D. Hsu, and A. Maleki, “Global analysis of expectation maximiza-
tion for mixtures of two gaussians,” arXiv preprint arXiv:1608.07630,
2016.

[24] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society: Series B (Methodological), pp.
267–288, 1996.

[25] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[26] O. Zadorozhnyi, G. Benecke, S. Mandt, T. Scheffer, and M. Kloft,
Huber-Norm Regularization for Linear Prediction Models. Springer
International Publishing, 2016, pp. 714–730.

[27] P. M. Williams, “Bayesian regularization and pruning using a laplace
prior,” Neural computation, vol. 7, no. 1, pp. 117–143, 1995.

[28] T. Kneib, S. Konrath, and L. Fahrmeir, “High dimensional structured
additive regression models: Bayesian regularization, smoothing and
predictive performance,” Journal of the Royal Statistical Society: Series
C (Applied Statistics), vol. 60, no. 1, pp. 51–70, 2011.

[29] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
IEEE International Conference on Computer Vision, 2015, pp. 1026–
1034.

[31] Y. Wang, X. Sun, and L. Liu, “A variable step size LMS adaptive filtering
algorithm based on l2 norm,” in 2016 IEEE International Conference
on Signal Processing, Communications and Computing, 2016, pp. 1–6.

[32] A. Krogh and J. A. Hertz, “A simple weight decay can improve
generalization,” in Advances in Neural Information Processing Systems,
1991.

[33] N. Meinshausen and P. Bhlmann, “High-dimensional graphs and variable
selection with the lasso,” The Annals of Statistics, vol. 34, no. 3, pp.
1436–1462, 2006.

[34] C. De Mol, E. De Vito, and L. Rosasco, “Elastic-net regularization in
learning theory,” Journal of Complexity, vol. 25, no. 2, pp. 201–230,
2009.

[35] M. Feurer, J. T. Springenberg, and F. Hutter, “Initializing bayesian
hyperparameter optimization via meta-learning.” in AAAI conference on
artificial intelligence, 2015, pp. 1128–1135.

[36] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in neural information
processing systems, 2011, pp. 2546–2554.

[37] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in Neural Information
Processing Systems, 2012, pp. 2951–2959.

[38] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[39] G. Luo, “A review of automatic selection methods for machine learning
algorithms and hyper-parameter values,” Network Modeling Analysis in
Health Informatics and Bioinformatics, vol. 5, no. 1, p. 18, 2016.

496

Authorized licensed use limited to: National University of Singapore. Downloaded on July 12,2021 at 08:49:55 UTC from IEEE Xplore. Restrictions apply.

